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Diffusion-mediated reactions with a time-dependent absorption rate
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Diffusion-mediated reactions models are particularly useful for the characterization of physical, chemical,
and biological problems. In this paper we present a theoretical study of the absorption probability density,
survival probability, and reaction rate for diffusion-mediated reactions models with a time-dependent finite
absorption ratdan extension of a model usually referred to as the “imperfect trap mod&le results are
obtained by means of the formalism of continuous time random walk on a lattice and considering a general
reaction dynamics upon encounter of the reactives. First jump probability densities are included to take initial
conditions into account. Previous results presented by Collins and Kifidb&blloid. Sci4, 425(1949] and
Noyes[J. Chem. Phys22, 1349(1954] are reobtained for the particular case of a time-independent absorp-
tivity. Short and long time behaviors are analyzed resulting, in particular, in that the long time behavior of the
absorption probability density exhibits the same time dependence as the first passage time density. The results
obtained are illustrated by considering a one-dimensional model with consequent discussion.

PACS numbse(s): 05.40—a, 05.60-k, 82.20.Fd, 02.50.Ey

I. INTRODUCTION without reaction in each encounter. Smoluchowski’s original
model turns out to be the limit case of infinite absorptivity or
The dynamics of diffusion-mediated reaction processesinity probability of reaction of the imperfect trap model. In

has been extensively studied for many years due to its rethese extensions, as already mentioned in R#&4], the
evance in the description of diverse phenomena in physicsisymptotic long time behavior of reaction rates will not be
chemistry, and biology[1-4]. A particularly interesting altered, being determined by the first passage time density
problem is the calculation of the probability density for the (FPTD) given by the diffusive model, as will be shown.
time at which a reactiolm+B—C takes place when the  Two traditional treatments have been given to the imper-
displacement of species or B (or both is diffusive. Other  fect trap model: one by Collins and Kimbdll6] based on
related magnitudes such as time-dependent reaction rates @nsiderations of the concentration gradient; the other one by
survival probabilities of the reactives can be derived from theNoyes [17] based on the reactivity of an isolated pair. A
mentioned probability distribution. Dielectric relaxation comparison between both approaches and a discussion on

[5-7], capture of ligands after surface diffusif8, proteins  their validity has been given by Razi Naqvi and co-workers
with active sites deep inside the protein mafi®{, and re- [18,19.

ceptor mediated endocytosis for cholesterol homeos[t?a@]_s In this paper the imperfect trap model is extended by in-
are examples of the application of the diffusion-mediatectluding a general probability density for the reaction time
reactions scheme. that allows a better description of the specific reaction pro-

The first calculation of chemical reaction rates from acess. Examples of application are rotational diffusion in
model of diffusing particles in the presence of a trap waschemical reaction$20] or proteins with active sites deep
proposed by SmoluchowskiL1]: a single absorbing sphere inside the protein matrif9]. The equivalence with previous
sorrounded by diffusing particles with an initial uniform con- work is obtained when an exponential reaction dynamics and
centration. The model assumes an immediate trap@@ag-  normal diffusion is assumed. The main magnitude to be cal-
tion) upon encounter of the reactivéan extremely short culated here is the absorption probability den$AD): the
reaction timg¢, a great dilution of one of the species probability density for the absorptiofreaction time of a
(pseudounimolecular scheinand normal diffusion withD  particle starting at an arbitrary distance from the trap.
=Da+Dg, D andDg being the diffusion constants & The calculation is made by means of the formalism of
and B, respectively[12]. Since the pioneering work of continuous time random walK€TRW) on a lattice, consid-
Smoluchowski, different extensions have been proposed tering the trap as a local inhomogeneity3]. The proposed
the original model to include diffusion in disordered mediamodel is described in Sec. Il, introducing a general reaction
[7] or to give a better description of the short time behavior.dynamics in the absence of diffusion. We also define here the
Among these extensions we mention the dynamic or gatetequivalent problem” as a CTRW in the absence of trap-
trapping model[13-15, where the reaction progress is ping; i.e., the usual CTRW scheme. Due attention is given to
modulated by another independent reactfors A* and the initial conditions by incorporating first jump probability den-
imperfect trap mode[6,16,17 introducing a finite reaction sities. In Sec. Ill, the APD is calculated in terms of the FPTD
time upon encounter of the reactives. In both cases of dyfor the equivalent problem. We note here that the FPTD is
namic and imperfect trapping the reactives may also separathe APD for the perfect trap or Smoluchowski’s model.

From the APD, reaction rates and reactives’ survival prob-
abilities are derived and comparison is established with Col-
*Electronic mail address: re@roble.fis.uncor.edu lins and Kimball's and Noyes’ results under appropriate
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FIG. 1. Random walk on a one-dimensional lattice in the presence of a trap. The reaction is modeled by a jump of the walker into a
“limbo” state, from where it cannot return. When the walker reaches trap position it can make a jump into the limbo with a probability
Ya(t)dt betweent andt+dt or it can escape to another lattice site with probability(t)dt.

boundary conditions. The asymptotic behavior of the APDthe conditional probability of finding a walker at sigeat

and the reaction rate in the short and long time limits are als‘ﬁmet given that it started fﬁo p (§§ ‘t), can be obtained
considered. In the long time limit, in particular, it is shown ; ter}ns of the Green'’s funct}onhby; 0

that the APD and the FPTD exhibit the same time depen-
dence. Finally in Sec. 1V, the results obtained from this pro- L R t .
posal are illustrated by considering a simple one-dimensional Pn(S,So;t)=Yo(S;t) d5 s, + J dt'Wo(s;t—t")
system, exhibiting the main characteristics predicted. 0

t’ S N
X dt” 2, Gy(s,s’;t' —t” s’,sqy;t”
II. MODEL DESCRIPTION Jo ; h( )Uo( 0 )

Let us consider an infinite lattice, a one-dimensional ver- (2.2
sion of which is shown in Fig. 1. Each position in the lattice
will be identified by an integer vect@. We assume that at where
some instant=_0 there is present on the lattice a distribution - o - -
of noninteracting walkers with concentratioa(§) at lattice \PO(S;U:L dt,; Yols',sit') 2.3
position s. Each walker is able to perform a random walk _
with a probability (S,S’;t—t')dt for a jump froms’ tos IS thesojournprobability ats (the probability that no further
betweert andt + dt, given that arrival t&’ was att=t’. As transitions occurred at least until tintesince the arrival of

pointed out by Tunalef21], the CTRW formalism should be the walke}, and
completed by incorporating a distinct waiting time density . % ..
(WTD) for the first jump,v(S,So;t), which describes the YO(S;I):L dt,Z, vu(s',s;t") 24
initial condition, with S, the walker position at=0. The )
point is that even when the walker startsgg,t the transition
to s, may have occurred some time befdre0. We will
refer to this CTRW without traps as the “equivalent prob-
lem.”

We include here some general CTRW results. Althoug

most of these results may be foufat least in principlgin . " :
the literature, we find it helpful to include them here with our CONSider the transition &t=0 as the first oneas for example

particular problem in mind and also to make consistent thd? Ref-[7]) so that
notation used in this paper. > >
og In IS pap N | Up(8,5071) = 855, 0(t—0") 2.5
Let Gy(s,s';t) be the probability density that a walker
reaches sits at timet given that it made a hop te’ att or alternatively we may consider as the first transition the
=0. This density satisfies the recursive relation first occurring at>0 [22] and

is the sojournprobability for the first jumgd22].
It is frequently assumed in the literatufaelthough not
always explicitly statedthat the instant=0 coincides with

the transition of the walker ts,. We shall call this particular
ssumption the “synchronized condition,” under which we
ave two possible choices for the first jump WTD: we may

vo(S,S0;1) = (S, 503 ). (2.6)

In both cases of Eq2.5 or (2.6) we get for the condi-
tional probability of finding a walker at sitgat timet, given
that it arrived to§0 att=0 (distinguished by superindes)

- > t - >
Gy(s,s';t)= §’§r5(t_0+)+f dt’E Po(s,s";t—t’)
0 gr/
X Gp(s",s":t’) (2.1

and it is the Green'’s function for the equivalent problem, . t . ..

indicated by subindek. Pﬁ(s,so;t)=f dt’ Vo(s;t—t")Gy(s,Sp;t"). (2.7
For a walker to be a$ at timet, it must have arrived ts °

at some timet’'<t and stayed there for a time interval  Of great interest in the CTRW theory, and particularly in

greater thart—t’. There is also the probability that=s,,  applications to diffusion controlled reaction models, is the

the starting position, and no transitions occurred at all. Henc&PTD, F,(s,So;t), that a walker starting a,, reaches for
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the first time sites; at timet. In fact, the time of the first W, ($,:1)= fxdt’
arrival is the time of trapping in the perfect trap or Smolu- v t
chowski's model. The FPTD is related to the conditional

probability (2.2) by an extension of the renewal equation defining the transition rates
[22] for a general WTD

Ya(t)+ 2 ya(s,si;t)| (212

libl(gvgl 1t)

N > t N N B(glgl;t): > )
Ph(s,so;t)zYo(s;t)ch’goﬂL fodt’Pﬁ(s,s;t—t’)Fh(s,so;t’) W(sy;t)
(2.9 Pat)
(t)y= ————, (2.13
NS

since the probability of finding the walker atat timet is

given by the probability of first arrival at betweent’(<t2 i.e., the probability per unit time of making a jump to site
andt’ +dt’ times the probability of finding the walker at  and to the limbo, respectively. If transitions to the limbo
after a timet—t’ has elapsed since the first arrival. There iswere not allowed[ y(t)=0] the probability density for a
also the probability that the walker was initiallygfand no  jump to s would be
transition occurred at all, given by the first term of the sec-
ond member. Notice that the conditional probability under Po(S,51;1) =B(S,5;t)exd — A(sy;t)]
the synchronized condition appears in the right hand side of
Eq. (2.8) since we are assuming that the walker arrives fowith
the first time at sites at timet'. ‘

The Laplace transformation of E(R.8) yields A(§l;t):f dt’ >, B(s,s;;t") (2.14

0 s

Ph(S,S05U) = Yo(S;u) 85 5,

- -

Fr(S,So;U)= — (2.9 i-e,the WTD ats, for the (iqtlivalent prclblem. Similarly, in
Pr(s,s;u) the absence of diffusioB(s,s;;t)=0 Vs the dynamics of
reaction is
Hereafter we distinguish the Laplace transform of a func-
tion by substituting t—u, so that Fu(s,Sq;u) () =y(exd —T(1)],

= [,dt e‘“‘Fh(§,§0;t) and similarly for the other functions. with
Equation(2.9) is a general relation for a CTRW, since no

assumptions as Markovianicity or separable process have t
been made. Under the synchronized condition, the FPTD is ()= fodt'y(t’)- (219
- Gh(S,S0;u : i ionshi ‘<hed-
Fﬁ(s,so;u)= h(S:So;U) 2.10 In this way the following relationships can be established:

Gh(s,s;u) N N
Wi(sy;t)=Wo(sy;)exd —I'(1)],
if we assume Eq(2.5), and .
Ya(S,S1;0) = Po(s,51;0)e 1O, (2.19
Gh(S,S0;U) — 85,5, N
(2.11) Pat) = y(H)e TOW(s;;t).

For the particular case af independent of time we get

F3(S,So;U) = —
e Gh(s,s;u)

if we assume Eq(2.6), giving for s=s, the probability of

return to the origin. #1(S,50;t) = ho(S,5,;t) e,
Consider now a trap at lattice posititﬁi. The reaction _
A+B—C is modeled by the trapping of a walker st (the Ya(t)=ye "Wo(sy;t), (2.17)
walker jumps into a “limbo” from where it cannot return _ .
[23]). Upon arriving tos, at timet, the walker may either be Wy(s;0)=Wo(sy;t)e

+ ) -2
trapped  betweent and t+dt with probability ¢t the usual imperfect trap model as proposed by Cof&iad]

—t)dt (t>ty) or it may jump tos with probability j,|attices or by Collins and Kimball16] in the continuous
(s, s1;t—ty)dt. In this way the diffusion of a walker in the space. Notice that in the limig— o
presence of a trap differs from that of the equivalent problem

because of the substitution g#(s,s;;t—t;) by #4(s,5;;t #1(S,5,;1)—0,
—ty).
We relate now the densitief, and i, with the dynamics Ya(t)—8(t—0"), (2.18

of hopping and reaction when considered as separate pro-
cesses. Theojournprobability at site§1 is given by \Ifl(él;t)—>0,
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upon arrival tos; as in the perfect trap model.
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(2.29

v1(S,81;1) = 1 (5,51 51),

To complete the description of the trapping problem, the

initial condition should be given through the first jump prob-

ability densities, in particular fos,=s,. To calculate these

first jump probability densities we extend the proposal of

Lax and Schef25] based on conditional probabilities: Con-

sider a regular lattice site# s1 and suppose that &&= 0 the
walker has sojourned there a time Then the probability

that the walker makes a transition 8 betweent and t
+dt is [26,27]

Po(s',Sit+ 1)

Wo(s; 7) 219

Yo(s' St ) =
Assuming now that the time interval is governed by a

probability densityp0(§; 7) (in principle dependent of the
site under consideratipnwve get

vo(s',Sit) = fo d7p(s;7)do(s' Sit|7). (220
The synchronized condition is given hy0(§; N=05(r
—07") resulting invy= . On the other hand, if there is a
finite mean waiting time at each sige (t);, the stationary

state is given by(s;7)="W(s;7)/(t); [22,25.
We extend the previous reasoning to §{eand denote by

p1(§1;r) the probability that at=0 a walker has sojourned
a time 7 at the trap position obtaining for the first jump

(S, S ;t+ 1)
Wy(Sy;7)

ya(t+7)
\Pl(sla T)

(8,55 = f:dTpl(gl;T)
2.21)
UA(t)_f d7py(Sy;7m) ————

The probability that a walker starting &t sojourns as,;
a time greater thahmay be calculated from Eq@2.21)

Yl(gl;t):J dt'| va(t) + X vi(S,Sp;t') | (2.22
t s
or, by means of Eq(2.16),
> * > \Pl(gl,t+ T)
Yl(sl;t):f drpy(sy; 1) ———— (223
0 Wi(s1;7)

va(t) = a(t),

nd the initial walker concentration is obwousl;b(s)
S,Sl
(2) Trap creation in a medium with uniform walker con-
centration This initial condition corresponds to the appear-

ance of the trap &, att=0 in a region free of traps with a
uniform walker concentration fot<0, as considered by
Chuang and EisenthdCE) [20]. We will assume here that
the trap does not decaylisappear except when trapping a
walker.

Let us consider now a walker thattat 0 has sojourned a

time 7 ats,. Extending the previous reasoning leading to Eq.
(2.16 we get for the probability densities of making a tran-
sition to another lattice site and to the limbo betweenand
t+dt

(_, N ) l//o(g,gl,t'f' ’T), _T<t<0
q(s,S1;t+7)= .
v e "Oyy(s,sy;t+7), t>0
(2.25
0, —7<t<O0
t+7)= .
UAETZ) e T O (5t 4 7), 150

respectively, since there is no trap fox0. For the same
reason, the probability density governing the time interval
will be the corresponding one to a regular lattice site:
pa(S1;7)=Wo(Sy; 7)/(t)s,. Substituting in Eq(2.21) we fi-
nally get

Ul(§,§1 ,t) = Uo(g,gl ;t)e_r(t),

va(h)=y()e TOY(sy;1), (2.26
(31, )=e TOY (51 t).

For other walkers being at any lattice sies §1, the first
jump probability density will be as in the stationary case; i.e.,

As an example of the calculation of first jump probability vo(§,§’;t). More general initial conditions may be obtained
densities, we consider two initial conditions of experimentalin a similar way.

interest.

(1) Pair creation A pair walker trap is created é’g att
=0 as considered by Nadler and St¢iS) [9]. The initial

condition in this case is described t;y(§; T)= 5;;15(7-
—07) since there are no walkers on the lattice fer0, and
att=0 the particle appears &. Under this initial condition

vo(gygl;t):o: gl;&glu

Ill. THE ABSORPTION PROBABILITY DENSITY

We calculate in this section the probability density that a
walker starting as, is absorbed by the trap a at timet,

denoted here by\(§0;t). Let us consider first the Green’s
function for the trapping problem, identified by subindex
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satisfying the recursive relation Here G,(s,Sq;t) is the probability density that a walker
reaches sits at timet given that it made a jump te, att
=0 for the trapping problem. The difference between this
t . o equation and recursive relati@®.1) for the equivalent prob-
+J dt' 2 ¥(s,8';t—1")Gy(s',So;t"). lem, is given by the contribution from’ =s, in the sum on
° < the right hand side. Proceeding as in Hé&f3] we get in the
(3.1) Laplace representation

Gi(S,S0;t) = 35,5,6(t—0")

Gn(S,51;U) = 855, 2 Gn(S,8';U) ¢ (S',S1:u)
Gu(5,50;U) = Gn(5,50:U) — Gn(S1,50; 1) > , (3.2
Gh(S1,51;U)— X Gp(S;,8';u) ¢ (S, Sp3u)
S!

WhereGh(§,§o;u) is the Green'’s function for the equivalent
problem satisfying Eq(2.1).

We are able now to give an expression for the APD in
terms of the Green’s function, since for a walker to be ab-

sorbed at time by the trap, it must arrive tc§1 at a time
t’ <t and then make a transition to the limbo after a time

—t’. There is also the probablity that the walker starteshat
and jumped into the limbo without Ieavirfg. Hence

- - - t -
Pt(s,so;t)=Y(s;t)5g,go+f dt’ ¥(s;t—t’)
0

xft At G585t — ) u(S' 50 t")
0 s/
3.6

by a similar reasoning to that leading to Eg.2) for the

equivalent problem. If we compare this equatios-ats, and

= v , Eg. (3.3) we find the relation
A(So;t):UA(t)5§0’§1+ fodt l//A(t_t ) q ( )

t’ .o I A*-)—Mp**-)
Xfo dt"z Gy(s,s';t" —t")v(s',sp;t"). (So;u _\pl(gl;u) t(S1,S03U
s/
(3.3 L - Pa(u) -
1) va(U)———=———Y ((S1;U) |,
£ VAW g Y
Taking Laplace transformation of E¢3.3) and substitut- 3.7)

ing Egs.(2.10 and(3.2) we get

_ which is a generalization of Collins and Kimball's absorp-
A(so;u)sz(u)ﬁgl,;oJr Pa(u) tion condition at the trap position for general diffusion and
trapping processes. If in particular we assume a constant
Z Fﬁ(§l,§’;u)u(§’,§o;u) trapping ratey we get from Eqs(2.17), (2.21), and(2.23
SI

X

, (3.4 A(So;t) = yPy(S1,50;t) 3.9

1— 2 FR(sy,8;u) (S’ ,S1;u)
s’ .
and the absorption of a walker startingsgtis proportional
i.e., the APD is expressed in terms of the FPTD as given byo the probability of finding it as,.
the equivalent problem. Notice that for the perfect trap A rather simpler expression f&k(sy;u) is obtained if a

model (y—x) ;=0 [Eq. (2.18] and the APD turns out to separable diffusion process is assumed:
be

. . Yo(S,S' ;1) =Ppg.ar o),
AP(Sg;u)=Fp(S1,S0;u) (1= 85, 3,)- (3.5 (3.9
Y1(S,5131) = P35, (b),
For a walker starting aio, the conditional probability of

finding it at sites at timet may be expressed in terms of the and similar expressions for the WTD for the first jump. Un-
Green'’s function through der these assumptions we get from E(&9 and (2.11)
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Q) ) the walkers do not interact among them, the survival prob-
2 F(s1,s";u)ps s (u)=——— Jo(U) Fi(s1,51;U), ability of the trap®(t) (the probability that no walker has
been trappedis obtained by extending the Bendler and
) o (3.10 Shlesingelf15] formula
2 FR(s1S'0)Ps ()= 1(u) h(S1,5150). t
q>(t):exp[—JOdt' > A(Soit')co(Sp) |- (3.16

So

Substituting in Eq(3.5 we get for the separable process

F (51, 50:U) (S0 1) The exponent is the integral of the time-dependent reac-
hi>1.20 0 tion rate,k(t) = — &, In (1),

P(u) oo o

A(So;U) = 85, g valU) + (L)

1- FR(S1,515u) N N
Yolw) = AlSoit)co(So) (3.17
(3.11 o
with and represents the flux of walkers into the trap betweserd
1 &3 t+dt. An analytic expression may be obtained in the
v Sp7F S Laplace representation by means of E3}4)
USg;u) = (3.12 N
LIRS k(u) = va(U)Col(S1) + Pa(u)
vp(U)
Gia ar- o o - g
We wish to draw attention on the similitude of this result 2 Fr(S1,8"U)v(S",S0;U)Co(So)
and the expression obtained by Weiss and R{i# for the %0 . (318

absorption generating function in discrete time random walk
assuming a probabilityr for the walker absorption in each
visit to the trap

1- 2 F8(s;,8";u)a(S,515U)
S’

If we substitute Eq(3.7) in Eq. (3.17) we get in turn

A(F: aF(F;z)
i aF G 313 k()= A5+ eofS)
Wq(s1;u)
whereF(F;z) is the qenerating function for the discrete time wa(U) A
FPT probability and the initial walker position relative to X| vp(Uu)— ——=——=Y(s1;U) |, (3.19
the trap. Both results can be compared by the usual substitu- Wi(sy;u)

tion z— ¢(u) with due inclusion of the first jump. In doing

so, however, some differences emerge wigns,; because
of the contribution to absorption of those realizations in . . -
which the walker is absorbed without leavisg. Besides C(Sl’t)_sz P+(S,50:1)Co((So) (320
this, denominators in both expressions of Ex11) and 0

(3.13 cannot be simply put into correspondence except
when it is assumed a constant ratend a Poisson hopping
process, in which case it is verified

where

s the walker concentration 5‘5.

In this way, a generalization of the absorption condition
proposed by Collins and Kimball's results. Besides the con-
(u) tribution from c(§l ;t) we note an extra contribution from the

Pi(u) . : A
Jo(U) =1—n(u). (3.14  initial concentration a§,, given by the second term.
For the particular case= const., independent of time,

Collins and Kimball's original absorption condition is ob-
tained

A. Survival probability and reaction rate

Let us consider a walker starting 55 The probability

that this walker has not been absorbed by the trap, dty k(t)=ye(s1;0). (3.2

time t (the one particle survival probabilitys If besidesy= const., we also assume the CE initial con-

¢ R dition; i.e., the initial walker concentration is the stationary
Sl(t)zl—f dt’ A(sg;t’). (3.15 distribution for the equivalent problem as discussed in Sec.
0 II, we obtain NoyesT17] proposal

Evaluated ats,=s;, Eq. (3.15 gives the survival prob- R o
ability under the NS initial condition and is proportional to k(t)=yco(s)| 1~ Odt Alsy;t') (322
the fraction of systems walker trap that has not reacted by
time t. with an explicit expression for Noyes’ functioh(t), the

Consider now a distribution of walkers with concentration probability density that a pair of reactive particles coinciding
co(so) att=0 in the presence of a trap s. Assuming that att=0 react at time.
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B. Asymptotic limits 1—

> o
We consider here the behavior of the APD and reaction Al ~1- o f(u) (3.27

rate in the limitst—0 andt—o for a separable process
(3.9. The calculation of asymptotic limits is carried out SO that the walker will certainly be trapped. In this case, for
starting with the exact expressiof.11) and (3.18 for the the particular valuexr=1/2, the APD and the probability of
respective Laplace transforms and analyzing the behavior iFeturn to the origin will be exactly coincidents at long times.
the corresponding limits—c andu—0, as established by ~_In summary we have found here that at short times (
Abelian and Tauberian theorerf29]. <t;) A(s;;t) will behave as the reaction dynamics, while at
We start considering the APD in the limit— (corre-  ong times ¢>t;) A(S;t) will exhibit the same time depen-
sponding tot—0). SinceF(s,sy;t)—0 for t—0, by the dence as the probability of return to the origin. This result
initial value theorem:h(ggo;u)_)o at least as1~ ! when  can be interpreted in terms of the competition between reac-
u—o. Besides this, by EQ(2.16) #4(t)<o(t)= f1(u) tion and diffusion dynamics for a walker starting é}t by
<yY(u)Vu and we may aproximate in the limit— o realizing that at short time@n particular compared with the

- -~ = - mean waiting time aﬁl) most reactions will correspond to
AlSo;U)~va(U) 85 5, + ha(U) v(So; U)Fh(S,So; ). particles that have not leff;, and in this way the reaction
(323 time will not be affected by diffusion. At long times, on the

In this way we may conclude that the dominant behavior aPther hand, most surviving particles will have left, and
short times will be given by the reaction dynamics wtmn now A(s;;t) is regulated by the probability of return to the

N . . : origin.
=S, and by the reaction dynamics convoluted with the "/ o1\« oy turn attention to the reaction rate as given by

FPTD for soaﬁsl In particular under NS initial conditions Eqg. (3.18, under CE initial conditions. In the short time

va= 5 and co(Sg) = 5,5, SO thatia(t) will be propor-  limit, by the same considerations leading to E8.23, we
tional to the number of reactions betweeandt +dt at short ~ get
times.
On the other extremet{~%) we will focus attention on s Pa(u)
NS initial conditions. We will assume here that the first mo- k(u)=Colsy)| va(w)+ to.U 3.28
ment of all transition probability densitieg; are finite @, 0
stands foryia, ¢4, Or ¢o) so that we can aproximate and, as in the case of the APD, the short time behavior is
_ dominated by the reaction dynamics.
gi(u)=~ ¢ —tiu (3.29 On the other hand, in the long time limit, and making the

o same assumptions leading to E§.26), we get

in the limitu—0, wheret; = [5dt ty;(t) is the first moment
of densityy; and ¢, = [Zdt ¢ (t). K(U)~Co(S;) ™ 1-f W @

N O _ - o O —(1-a)f|| u u 1-(1—a)f

ormalization condition imposes, =1 while ha,=ais ' (3| 29

the probability of absorption in each visit am{qoz l-ais '
the probablity of escaping in each visit. For the particularand, again as in the case of the APD, the long time behavior
case ofy= const. and a Poisson jumping process as given bjor the reaction rate is determined by the probability of re-
o=\ exp(=At), we get from Eq(2.17) the simple relation turn to the origin. In particular, if,=1, we get the simpler
a=vyl(y+\) anda—1 wheny— (the perfect trap cage €xpression

At the same time we will assume a rather general behav-
ior for the FPTD

DN I,
k(u)%co(sl)af(u) 1+f(u)m . (3.30
FR(Sy,Sp5u)=~fi—f(u), (3.29 i

The transition from the reactive regime at short times to
where 0<f;<1 is the probability of return to the origin and the diffusive regime at long times exhibited by the reaction
f(u)>u for u<u,, some fixed valugfor example, in nor-  rate can be interpreted in similar terms as in the case of the
mal one-dimensional diffusiof(u)=u/?. Using these ap- APD: At short times the main contribution to reactions will

proximations we get be given by those walkers initially a. This will produce a
depletion in walker concentration 51 that will be compen-

A(S,:u)~ @ I o)) f(u) sated at later times by the diffusion process. In this way, as
1-(1-a)f; [1-(1-a)f ]? the concentration of walkers evolves in time, the behavior at
(3.26  the long time limit becomes regulated by the diffusion pro-
cess.

and we find that the APD exhibits the same time dependence
as the FPTD in the long time limit, although the coefficients

of the expansion are modified by the dynamics of reaction.
When return to the origin is certainf|&1), we find the We illustrate the results obtained with the proposed treat-
asymptotic behavior ment for an imperfect trap by considering a one-dimensional

IV. ONE-DIMENSIONAL RANDOM WALK
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separable random walker with hopping probability density 10°
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where\ “1=(ty) is the mean waiting time at any si¢¢. We
are defining in this way the equivalent problem with Green’s
function

Gn(s,8";t)=e Ma[ls_s|(\)] (4.2

as is obtained by substituting E@t.1) in recursive relation
(2.1).

For the reaction time we assume a generic probability
density in the absence of diffusion

(BY)"

Pr()=——pe " (4.3
- 1072 wl‘1 1[‘)" 1[‘); 10°
i.e., an Erlang density with mean reaction tinig)=(n 10 T T T T T
. . - 1072 107t 10° 10t 10? 10% 10*
+1)/pB corresponding to a time-dependent absorptivity /(L)
d
n
y(t):ﬁn(ﬁ—t). (4.4) FIG. 2. APD vst/(ty) for the one-dimensional model under
: - consideratior(see text Shown are the plots for different values o
j ideratior( Xt Sh he plots for diff | f
1'20 j_!(ﬁt) k=(tg)/(t,). Here(ty) is the mean waiting time at any site in the

lattice and(t,) is the mean reaction time.

The particular valuen=0 reduces the example to the g5 4g0rithmLapiny [30]. It can be appreciated here that
usual imperfect trap model with a time-independent absorpge transition from the reaction regime at short times (
tivity. B N _ <(ty)) to the diffusive regime fot>(t4) was in accordance

The probability densitieg;, and ¢/, can now be obtained ith the conclusions extracted from the asymptotic behavior
substituting Eqs(4.1) and(4.3) in Eq. (2.16, resulting in the  analysis. This transition is more evident for values<of1,
Laplace representation when (t,;)<(ty). The transition between both regimes re-

n]-(D) flects the fact that at short times as compared to characteristic
u

1+ ——

B ]

diffusion time ((tq4)) no significative fraction of walkers will
have escaped frors.

The probability that a walketinitially at s;) is trapped
without leavings; is given by, (t) under the assumed ini-
1+ 7 (4.5 tial condition. The inset in Fig. 2 shows a comparison among

A(s1;t), a(t) and ¢, (t) for «k=0.01, 100.
It remains to give the initial condition in order to define ~ On the other hand, the long time behavior exhibits the

introduced NS and CE initial conditioriSec. I). origin as predicted by.Ec(.3.27), although the time at which
the asymptotic behavior is reached depends on the value of

k. As it can be appreciated from Fig. 2, this behavior is
reached faster for greater values«gfwhen there is a smaller
This initial condition is introduced in the model through probability of escaping frons; in each visit: - a=1/(1
the first jump densitie$2.24. With these expressions and + k).
making use of Egs(2.3), (3.11), and (4.1) we get for the The dominance of reaction dynamics becomes more evi-
Laplace transform of the APEB.11) dent in Fig. 3, where we have plottéX(s; ;t) for different
values ofx andn. The time scale in this plot is given in units
of (t;), the mean reaction time. For increasing values,of
the reaction probability density, [Eq. (4.3)] is more con-
(4.6 centrated around the mean val(te), and this behavior is
also observed by the APD. The long time behavior, in turn,
The results obtained far=0 and different values of the exhibits the same time dependence as the probability of re-
quotient turn to the origin. Notice in particular that fot=100 all
curves converge to the same asymptotic behavior, indepen-
 (ta) dent of the particular value chosen far
(tr)

The inset in Fig. 3 shows again a comparison among
A(sy;t), ¥a(t), and ¢, (t) for two different values ofx.

are shown in Fig. 2 with time in units dty). These values Here the coincidence of APD anfl,(t) at short times can

were numerically computed by means of the Laplace inveragain be appreciated.

¢l(s1sl;u): lﬁo(S,Sl,u)[ 1—-

u+n|- D

Ya(u)=

A. Pair creation at t=0

u(u+2\) & it

>

( u+Xa
g i=0

1+T

A(sl;u)=|1+

(4.7

K
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of k=(tq)/{t,) andn is the index of Erlang distribution.
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FIG. 4. Survival probability and time-dependent reaction rate vs
FIG. 3. APD vst/(t,). Shown are the plots for different values t/{t:) for the one-dimensional model under consideratiee text

The main figure shows the plots for different values ®of

=(tg)/{t;) and n is the index of Erlang distribution. The inset

B. Trap creation in a uniform walker concentration

shows the corresponding values for the reaction rate for the same

set of values for the parameters.

This initial condition, referred to as CE in Sec. I, is de-
scribed by the first jump densiti€2.26). With the particular
expressions obtained when substituting E4.5 in Eq.
(2.26 and making use of Eg92.10, (3.11), (3.18, and
(4.1) we get for the reaction rate

u/u
A x(x”
K=oy NOEE Y, 8
Vg ﬁ”ﬁ)?o Lt

in the Laplace representation. The inset in Fig. 4 shows a
plot of k(t) for different choices of the parametetsandn.
In this plot, the time scale is given in units ¢f).

We can appreciate here the transition from the reactive to
the diffusive regime as time evolves, as was already dis-
cussed when asymptotic behavior was analyzed in Sec. Il B.
Again the transition becomes more evident for greater values
of k. As in the case of the APD in the previous section, we
see that at long times all curves corresponding to a given
value of k converge to the same function, while the time at =
which the asymptotic regime is reached depends on the valuc§
of k. -

The survival probability can be calculated from the reac-
tion rate through

@(t)ZeX[{—J'tdt'k(t') . 4.9
0

The results obtained for the same values«oéndn al-
ready considered are shown in the main plot of Fig. 4, pre-
sented ag ® ()] vs t/(t,) in order to make the curves
independent of the particular value of initial walkers’ con-

times can also be observed in this plot. For a given value ofions occurred by time.

k, in particular, we can appreciate a delay in walkers’ ab-
sorption with increasing values of

At long times, on the other hand, we observe the behavior

predicted by the probability of return to the oridias this is
the dominant behavior dé(t)].

The influence of initial walkers’ concentration is consid-

1.0

F(H)=1—®(t)

ered in Fig. 5, where we have plotted the function

(4.10

0.8

0.6

0.4

t/{t,) !

_ _ : / FIG. 5. F(t)=1—-®(t) vs t/{ty) for different values of initial
centration. The influence of reaction dynamics for shortwalkers’ concentrationf(t) is proportional to the number of reac-
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vs time in units of(ty). This function, introduced in Ref. and in the limit y—o, Smoluchowski’s originial model
[20], gives the fraction of minority specigthe trap that has emerges. Due attention has been given to initial conditions
reacted by timd; i.e., the number of reactions occurred by by incorporating first jump probability densities that gener-
time t divided by the initial number of reactivA. We have alize previous results in the literature. Particular examples of
chosen for comparison two different valuesroéind a fixed experimental intere$®,20] have been discussed and the cor-
value of k=3.2 as determined from physical parameters inresponding expressions for first jump densities have been
CE. Three different values for the initial concentration of derived.

minority species have been selected, also in accordance with The main results of this study were presented in Sec. lll,
CE when the lattice parameter is identified with the reactiorcorresponding to expressida.4) for the APD, Eq(3.18 for
radius. the time-dependent reaction rate, and E316) for the sur-

At short times the curves can be grouped according to theival probability. In particular, Eq(3.19 is a generalization
value of n, reflecting the dominance of reaction dynamics.of Collins and Kimball's absorption condition when a gen-
On the other extreme, at long times, when the diffusive reeral diffusion process is considered. For the particular gase
gime is dominant, the behavior is determined by the initialindependent of time and assuming an initial walker concen-
walkers’ concentration. A direct comparison with experi- tration in equilibrium previous to the appearance of the trap,
mental values reported by CE cannot be established at longoyes’ proposal is obtained with an explicit expression for
times, since we are considering here a one-dimensiondhe probability density that a reactive pair coincidentt at
model while the CE experiment is three-dimensional. Never=0 reacts at timé: the APD withs; the initial position of
theless, the short time behavior does not depend on the dihe walker.
mension of diffusion space since it is governed by reaction The short and long time behavior of the APD and reaction
dynamics. In this way we believe that discrepancies reportechate were analyzed in Sec. Ill B. We conclude from this
at short times by CE could be explained in terms of a moranalysis that at short times the behavior of both magnitudes

detailed description of the reaction process. is governed by the reaction dynamics, while at long times the
time dependence is that of the probability of return to the
V. DISCUSSION AND CONCLUSIONS origin.

] - . The results obtained were illustrated in Sec. IV by con-

We have presented a theoretical study of diffusion medigjgering a one-dimensional diffusive model. One of the most
ated reaction processes .that extends previous treatmentsimportant consequences predicted by the proposed treatment
order to include the trapping or reaction procéssough the s that the short time behavior of the relevant magnitudes is
reaction probability densily Expressions for magnitudes of governed by reaction dynamics. This behavior is not pre-
experimental interest, the absorption probability densitygicted by Collins and Kimball since it is a consequence of
time-dependent reaction rate, and survival probability, argne finjte size of the trap implicitely assumed when consid-
obtained in terms of the probability densities that charactergying a lattice diffusion. In fact, since the trap is assumed to
ize the hopping and reaction processes. Our treatment CORg 4 |attice site, its extension is given by the lattice param-
tains as a particular case the so called imperfect trap modeher. |f we assume a lattice paramedeand we take the limit
first considered by Collins and KimbdlL6] on the continu- 5_, keepingha?/2=D and ya=k, in expression(4.8),

ous space and later on by Condét on a lattice. Further-  cqjins and Kimball's result for the time-dependent reaction
more, our model remains valid for non-Markovian diffusion. \4te is reobtained. In this way we think that the proposed

In particular, expressiof2.9) for the first passage time den- yeatment may be helpful in particular to analyze the short

sity is a generalization of previous results since no particulagime pehavior of reaction mediated processes and the influ-
assumptions such as Markovianicity or separability of thegnce of reaction dynamics.

process have been made.

In Sec. Il we have characterized the trapping or reaction
process by defining a time-dependent transition rate to the
limbo y(t) or alternatively by the reaction probability den-  The authors acknowledge Dr. Domingo Prato for a thor-
sity when diffusion is not allowedy, (t). Both magnitudes ough discussion of this paper. This research has been sup-
are connected through E.15. The imperfect trap model ported by CONICET(Argentinad through Grant No. PICT
is obtained by assuming a time-independent absorptivity 0153/98 and by CONICOR through Grant No. PID 4158/97.
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