
PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Diffusion-mediated reactions with a time-dependent absorption rate

Miguel A. Ré* and Carlos E. Budde
Facultad de Matema´tica, Astronomı´a y Fı́sica, Universidad Nacional de Co´rdoba, Ciudad Universitaria, 5010 Co´rdoba, Argentina

~Received 28 July 1999!

Diffusion-mediated reactions models are particularly useful for the characterization of physical, chemical,
and biological problems. In this paper we present a theoretical study of the absorption probability density,
survival probability, and reaction rate for diffusion-mediated reactions models with a time-dependent finite
absorption rate~an extension of a model usually referred to as the ‘‘imperfect trap model’’!. The results are
obtained by means of the formalism of continuous time random walk on a lattice and considering a general
reaction dynamics upon encounter of the reactives. First jump probability densities are included to take initial
conditions into account. Previous results presented by Collins and Kimball@J. Colloid. Sci.4, 425~1949!# and
Noyes@J. Chem. Phys.22, 1349~1954!# are reobtained for the particular case of a time-independent absorp-
tivity. Short and long time behaviors are analyzed resulting, in particular, in that the long time behavior of the
absorption probability density exhibits the same time dependence as the first passage time density. The results
obtained are illustrated by considering a one-dimensional model with consequent discussion.

PACS number~s!: 05.40.2a, 05.60.2k, 82.20.Fd, 02.50.Ey
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I. INTRODUCTION

The dynamics of diffusion-mediated reaction proces
has been extensively studied for many years due to its
evance in the description of diverse phenomena in phys
chemistry, and biology@1–4#. A particularly interesting
problem is the calculation of the probability density for t
time at which a reactionA1B→C takes place when the
displacement of speciesA or B ~or both! is diffusive. Other
related magnitudes such as time-dependent reaction rat
survival probabilities of the reactives can be derived from
mentioned probability distribution. Dielectric relaxatio
@5–7#, capture of ligands after surface diffusion@8#, proteins
with active sites deep inside the protein matrix@9#, and re-
ceptor mediated endocytosis for cholesterol homeostasis@10#
are examples of the application of the diffusion-media
reactions scheme.

The first calculation of chemical reaction rates from
model of diffusing particles in the presence of a trap w
proposed by Smoluchowski@11#: a single absorbing spher
sorrounded by diffusing particles with an initial uniform co
centration. The model assumes an immediate trapping~reac-
tion! upon encounter of the reactives~an extremely short
reaction time!, a great dilution of one of the specie
~pseudounimolecular scheme! and normal diffusion withD
5DA1DB , DA and DB being the diffusion constants ofA
and B, respectively @12#. Since the pioneering work o
Smoluchowski, different extensions have been propose
the original model to include diffusion in disordered med
@7# or to give a better description of the short time behavi
Among these extensions we mention the dynamic or ga
trapping model @13–15#, where the reaction progress
modulated by another independent reactionA↔A* and the
imperfect trap model@6,16,17# introducing a finite reaction
time upon encounter of the reactives. In both cases of
namic and imperfect trapping the reactives may also sepa
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without reaction in each encounter. Smoluchowski’s origin
model turns out to be the limit case of infinite absorptivity
unity probability of reaction of the imperfect trap model.
these extensions, as already mentioned in Ref.@14#, the
asymptotic long time behavior of reaction rates will not
altered, being determined by the first passage time den
~FPTD! given by the diffusive model, as will be shown.

Two traditional treatments have been given to the imp
fect trap model: one by Collins and Kimball@16# based on
considerations of the concentration gradient; the other one
Noyes @17# based on the reactivity of an isolated pair.
comparison between both approaches and a discussio
their validity has been given by Razi Naqvi and co-worke
@18,19#.

In this paper the imperfect trap model is extended by
cluding a general probability density for the reaction tim
that allows a better description of the specific reaction p
cess. Examples of application are rotational diffusion
chemical reactions@20# or proteins with active sites dee
inside the protein matrix@9#. The equivalence with previou
work is obtained when an exponential reaction dynamics
normal diffusion is assumed. The main magnitude to be c
culated here is the absorption probability density~APD!: the
probability density for the absorption~reaction! time of a
particle starting at an arbitrary distance from the trap.

The calculation is made by means of the formalism
continuous time random walks~CTRW! on a lattice, consid-
ering the trap as a local inhomogeneity@13#. The proposed
model is described in Sec. II, introducing a general react
dynamics in the absence of diffusion. We also define here
‘‘equivalent problem’’ as a CTRW in the absence of tra
ping; i.e., the usual CTRW scheme. Due attention is given
initial conditions by incorporating first jump probability den
sities. In Sec. III, the APD is calculated in terms of the FPT
for the equivalent problem. We note here that the FPTD
the APD for the perfect trap or Smoluchowski’s mode
From the APD, reaction rates and reactives’ survival pro
abilities are derived and comparison is established with C
lins and Kimball’s and Noyes’ results under appropria
1110 ©2000 The American Physical Society
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FIG. 1. Random walk on a one-dimensional lattice in the presence of a trap. The reaction is modeled by a jump of the walk
‘‘limbo’’ state, from where it cannot return. When the walker reaches trap position it can make a jump into the limbo with a prob
cA(t)dt betweent and t1dt or it can escape to another lattice site with probabilityc1(t)dt.
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boundary conditions. The asymptotic behavior of the AP
and the reaction rate in the short and long time limits are a
considered. In the long time limit, in particular, it is show
that the APD and the FPTD exhibit the same time dep
dence. Finally in Sec. IV, the results obtained from this p
posal are illustrated by considering a simple one-dimensio
system, exhibiting the main characteristics predicted.

II. MODEL DESCRIPTION

Let us consider an infinite lattice, a one-dimensional v
sion of which is shown in Fig. 1. Each position in the latti
will be identified by an integer vectorsW. We assume that a
some instantt50 there is present on the lattice a distributi
of noninteracting walkers with concentrationc0(sW) at lattice
position sW. Each walker is able to perform a random wa
with a probabilityc0(sW,sW8;t2t8)dt for a jump fromsW8 to sW

betweent andt1dt, given that arrival tosW8 was att5t8. As
pointed out by Tunaley@21#, the CTRW formalism should be
completed by incorporating a distinct waiting time dens
~WTD! for the first jump,y0(sW,sW0 ;t), which describes the
initial condition, with sW0 the walker position att50. The
point is that even when the walker starts atsW0, the transition
to sW0 may have occurred some time beforet50. We will
refer to this CTRW without traps as the ‘‘equivalent pro
lem.’’

We include here some general CTRW results. Althou
most of these results may be found~at least in principle! in
the literature, we find it helpful to include them here with o
particular problem in mind and also to make consistent
notation used in this paper.

Let Gh(sW,sW8;t) be the probability density that a walke
reaches sitesW at time t given that it made a hop tosW8 at t
50. This density satisfies the recursive relation

Gh~sW,sW8;t !5dsW,sW8d~ t201!1E
0

t

dt8(
sW9

c0~sW,sW9;t2t8!

3Gh~sW9,sW8;t8! ~2.1!

and it is the Green’s function for the equivalent proble
indicated by subindexh.

For a walker to be atsW at timet, it must have arrived tosW
at some timet8,t and stayed there for a time interv
greater thant2t8. There is also the probability thatsW5sW0,
the starting position, and no transitions occurred at all. He
o

-
-
al

-

h

e

,

e

the conditional probability of finding a walker at sitesW at
time t, given that it started atsW0 , Ph(sW,sW0 ;t), can be obtained
in terms of the Green’s function by

Ph~sW,sW0 ;t !5Y0~sW;t !dsW,sW0
1E

0

t

dt8C0~sW;t2t8!

3E
0

t8
dt9(

sW8
Gh~sW,sW8;t82t9!y0~sW8,sW0 ;t9!

~2.2!

where

C0~sW;t !5E
t

`

dt8(
sW8

c0~sW8,sW;t8! ~2.3!

is thesojournprobability atsW ~the probability that no further
transitions occurred at least until timet since the arrival of
the walker!, and

Y0~sW;t !5E
t

`

dt8(
sW8

y0~sW8,sW;t8! ~2.4!

is thesojournprobability for the first jump@22#.
It is frequently assumed in the literature~although not

always explicitly stated! that the instantt50 coincides with
the transition of the walker tosW0. We shall call this particular
assumption the ‘‘synchronized condition,’’ under which w
have two possible choices for the first jump WTD: we m
consider the transition att50 as the first one~as for example
in Ref. @7#! so that

y0~sW,sW0 ;t !5dsW,sW0
d~ t201! ~2.5!

or alternatively we may consider as the first transition
first occurring att.0 @22# and

y0~sW,sW0 ;t !5c0~sW,sW0 ;t !. ~2.6!

In both cases of Eq.~2.5! or ~2.6! we get for the condi-
tional probability of finding a walker at sitesW at timet, given
that it arrived tosW0 at t50 ~distinguished by superindexS)

Ph
S~sW,sW0 ;t !5E

0

t

dt8C0~sW;t2t8!Gh~sW,sW0 ;t8!. ~2.7!

Of great interest in the CTRW theory, and particularly
applications to diffusion controlled reaction models, is t
FPTD, Fh(sW,sW0 ;t), that a walker starting atsW0, reaches for
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the first time sitesW1 at time t. In fact, the time of the first
arrival is the time of trapping in the perfect trap or Smo
chowski’s model. The FPTD is related to the condition
probability ~2.2! by an extension of the renewal equatio
@22# for a general WTD

Ph~sW,sW0 ;t !5Y0~sW;t !dsW,sW0
1E

0

t

dt8Ph
S~sW,sW;t2t8!Fh~sW,sW0 ;t8!

~2.8!

since the probability of finding the walker atsW at time t is
given by the probability of first arrival atsW betweent8(,t)
and t81dt8 times the probability of finding the walker atsW
after a timet2t8 has elapsed since the first arrival. There
also the probability that the walker was initially atsW0 and no
transition occurred at all, given by the first term of the se
ond member. Notice that the conditional probability und
the synchronized condition appears in the right hand sid
Eq. ~2.8! since we are assuming that the walker arrives
the first time at sitesW at time t8.

The Laplace transformation of Eq.~2.8! yields

Fh~sW,sW0 ;u!5
Ph~sW,sW0 ;u!2Y0~sW;u!dsW,sW0

Ph
S~sW,sW;u!

. ~2.9!

Hereafter we distinguish the Laplace transform of a fu
tion by substituting t→u, so that Fh(sW,sW0 ;u)
5*0

`dt e2utFh(sW,sW0 ;t) and similarly for the other functions
Equation~2.9! is a general relation for a CTRW, since n
assumptions as Markovianicity or separable process h
been made. Under the synchronized condition, the FPTD

Fh
G~sW,sW0 ;u!5

Gh~sW,sW0 ;u!

Gh~sW,sW;u!
~2.10!

if we assume Eq.~2.5!, and

Fh
S~sW,sW0 ;u!5

Gh~sW,sW0 ;u!2dsW,sW0

Gh~sW,sW;u!
~2.11!

if we assume Eq.~2.6!, giving for sW5sW0 the probability of
return to the origin.

Consider now a trap at lattice positionsW1. The reaction
A1B→C is modeled by the trapping of a walker atsW1 ~the
walker jumps into a ‘‘limbo’’ from where it cannot return
@23#!. Upon arriving tosW1 at timet1 the walker may either be
trapped betweent and t1dt with probability cA(t
2t1)dt (t.t1) or it may jump to sW with probability
c1(sW,sW1 ;t2t1)dt. In this way the diffusion of a walker in the
presence of a trap differs from that of the equivalent probl
because of the substitution ofc0(sW,sW1 ;t2t1) by c1(sW,sW1 ;t
2t1).

We relate now the densitiesc1 andcA with the dynamics
of hopping and reaction when considered as separate
cesses. Thesojournprobability at sitesW1 is given by
l

-
r
of
r

-

ve
is

ro-

C1~sW1 ;t !5E
t

`

dt8FcA~ t8!1(
sW

c1~sW,sW1 ;t8!G ~2.12!

defining the transition rates

B~sW,sW1 ;t !5
c1~sW,sW1 ;t !

C1~sW1 ;t !
,

g~ t !5
cA~ t !

C1~sW1 ;t !
, ~2.13!

i.e., the probability per unit time of making a jump to sitesW
and to the limbo, respectively. If transitions to the limb
were not allowed@g(t)50# the probability density for a
jump to sW would be

c0~sW,sW1 ;t !5B~sW,sW1 ;t !exp@2L~sW1 ;t !#

with

L~sW1 ;t !5E
0

t

dt8(
sW

B~sW,sW1 ;t8! ~2.14!

i.e., the WTD atsW1 for the equivalent problem. Similarly, in
the absence of diffusion,B(sW,sW1 ;t)50 ;sW the dynamics of
reaction is

c r~ t !5g~ t !exp@2G~ t !#,

with

G~ t !5E
0

t

dt8g~ t8!. ~2.15!

In this way the following relationships can be establishe

C1~sW1 ;t !5C0~sW1 ;t !exp@2G~ t !#,

c1~sW,sW1 ;t !5c0~sW,sW1 ;t !e2G(t), ~2.16!

cA~ t !5g~ t !e2G(t)C0~sW1 ;t !.

For the particular case ofg independent of time we get

c1~sW,sW1 ;t !5c0~sW,sW1 ;t !e2gt,

cA~ t !5ge2gtC0~sW1 ;t !, ~2.17!

C1~sW1 ;t !5C0~sW1 ;t !e2gt

the usual imperfect trap model as proposed by Condat@6,24#
in lattices or by Collins and Kimball@16# in the continuous
space. Notice that in the limitg→`

c1~sW,sW1 ;t !→0,

cA~ t !→d~ t201!, ~2.18!

C1~sW1 ;t !→0,
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corresponding to an immediate absorption of the wal
upon arrival tosW1 as in the perfect trap model.

To complete the description of the trapping problem,
initial condition should be given through the first jump pro
ability densities, in particular forsW05sW1. To calculate these
first jump probability densities we extend the proposal
Lax and Scher@25# based on conditional probabilities: Con
sider a regular lattice sitesWÞsW1 and suppose that att50 the
walker has sojourned there a timet. Then the probability
that the walker makes a transition tosW8 betweent and t
1dt is @26,27#

c0~sW8,sW;tut!5
c0~sW8,sW;t1t!

C0~sW;t!
. ~2.19!

Assuming now that the time intervalt is governed by a
probability densityr0(sW;t) ~in principle dependent of the
site under consideration! we get

y0~sW8,sW;t !5E
0

`

dt r~sW;t!c0~sW8,sW;tut!. ~2.20!

The synchronized condition is given byr0(sW;t)5d(t
201) resulting iny05c0. On the other hand, if there is
finite mean waiting time at each sitesW, ^t&sW , the stationary
state is given byr0(sW;t)5C0(sW;t)/^t&sW @22,25#.

We extend the previous reasoning to sitesW1 and denote by
r1(sW1 ;t) the probability that att50 a walker has sojourne
a timet at the trap position obtaining for the first jump

y1~sW,sW1 ;t !5E
0

`

dt r1~sW1 ;t!
c1~sW,sW1 ;t1t!

C1~sW1;t!
,

~2.21!

yA~ t !5E
0

`

dt r1~sW1 ;t!
cA~ t1t!

C1~sW1;t!
.

The probability that a walker starting atsW1 sojourns atsW1
a time greater thant may be calculated from Eq.~2.21!

Y1~sW1 ;t !5E
t

`

dt8F yA~ t8!1(
sW

y1~sW,sW1 ;t8!G ~2.22!

or, by means of Eq.~2.16!,

Y1~sW1 ;t !5E
0

`

dt r1~sW1 ;t!
C1~sW1 ;t1t!

C1~sW1 ;t!
. ~2.23!

As an example of the calculation of first jump probabili
densities, we consider two initial conditions of experimen
interest.

~1! Pair creation. A pair walker trap is created atsW1 at t
50 as considered by Nadler and Stein~NS! @9#. The initial
condition in this case is described byr(sW;t)5dsW,sW1

d(t

201) since there are no walkers on the lattice fort,0, and
at t50 the particle appears onsW1. Under this initial condition

y0~sW,sW8;t !50, sW8ÞsW1 ,
r

e

f

l

y1~sW,sW1 ;t !5c1~sW,sW1 ;t !, ~2.24!

yA~ t !5cA~ t !,

and the initial walker concentration is obviouslyc0(sW)
5dsW,sW1

.
~2! Trap creation in a medium with uniform walker con

centration. This initial condition corresponds to the appea
ance of the trap atsW1 at t50 in a region free of traps with a
uniform walker concentration fort,0, as considered by
Chuang and Eisenthal~CE! @20#. We will assume here tha
the trap does not decay~disappear! except when trapping a
walker.

Let us consider now a walker that att50 has sojourned a
time t at sW1. Extending the previous reasoning leading to E
~2.16! we get for the probability densities of making a tra
sition to another lattice sitesW and to the limbo betweent and
t1dt

c1~sW,sW1 ;t1t!5H c0~sW,sW1 ;t1t!, 2t,t,0

e2G(t)c0~sW,sW1 ;t1t!, t.0
~2.25!

cA~ t1t!5H 0, 2t,t,0

g~ t !e2G(t)C0~sW1 ;t1t!, t.0

respectively, since there is no trap fort,0. For the same
reason, the probability density governing the time intervat
will be the corresponding one to a regular lattice si
r1(sW1 ;t)5C0(sW1 ;t)/^t&sW1

. Substituting in Eq.~2.21! we fi-
nally get

y1~sW,sW1 ;t !5y0~sW,sW1 ;t !e2G(t),

yA~ t !5g~ t !e2G(t)Y0~sW1 ;t !, ~2.26!

Y1~sW1 ;t !5e2G(t)Y0~sW1 ;t !.

For other walkers being at any lattice sitesW8ÞsW1, the first
jump probability density will be as in the stationary case; i.
y0(sW,sW8;t). More general initial conditions may be obtaine
in a similar way.

III. THE ABSORPTION PROBABILITY DENSITY

We calculate in this section the probability density tha
walker starting atsW0 is absorbed by the trap atsW1 at time t,
denoted here byA(sW0 ;t). Let us consider first the Green’
function for the trapping problem, identified by subindext,
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satisfying the recursive relation

Gt~sW,sW0 ;t !5dsW,sW0
d~ t201!

1E
0

t

dt8(
sW8

c~sW,sW8;t2t8!Gt~sW8,sW0 ;t8!.

~3.1!
t

in
b

e
t

b
ap

e

Here Gt(sW,sW0 ;t) is the probability density that a walke
reaches sitesW at time t given that it made a jump tosW0 at t
50 for the trapping problem. The difference between t
equation and recursive relation~2.1! for the equivalent prob-
lem, is given by the contribution fromsW85sW1 in the sum on
the right hand side. Proceeding as in Ref.@13# we get in the
Laplace representation
Gt~sW,sW0 ;u!5Gh~sW,sW0 ;u!2Gh~sW1 ,sW0 ;u!

Gh~sW,sW1 ;u!2dsW,sW1
2(

sW8
Gh~sW,sW8;u!c1~sW8,sW1 ;u!

Gh~sW1 ,sW1 ;u!2(
sW8

Gh~sW1 ,sW8;u!c1~sW8,sW1 ;u!

, ~3.2!
p-
nd
tant

n-
whereGh(sW,sW0 ;u) is the Green’s function for the equivalen
problem satisfying Eq.~2.1!.

We are able now to give an expression for the APD
terms of the Green’s function, since for a walker to be a
sorbed at timet by the trap, it must arrive tosW1 at a time
t8,t and then make a transition to the limbo after a timt
2t8. There is also the probablity that the walker started asW1

and jumped into the limbo without leavingsW1. Hence

A~sW0 ;t !5yA~ t !dsW0 ,sW1
1E

0

t

dt8 cA~ t2t8!

3E
0

t8
dt9(

sW8
Gt~sW,sW8;t82t9!y~sW8,sW0 ;t9!.

~3.3!

Taking Laplace transformation of Eq.~3.3! and substitut-
ing Eqs.~2.10! and ~3.2! we get

A~sW0 ;u!5yA~u!dsW1 ,sW0
1cA~u!

3

(
sW8

Fh
G~sW1 ,sW8;u!y~sW8,sW0 ;u!

12(
sW8

Fh
G~sW1 ,sW8;u!c1~sW8,sW1 ;u!

, ~3.4!

i.e., the APD is expressed in terms of the FPTD as given
the equivalent problem. Notice that for the perfect tr
model (g→`) c150 @Eq. ~2.18!# and the APD turns out to
be

AP~sW0 ;u!5Fh~sW1 ,sW0 ;u!~12dsW0 ,sW1
!. ~3.5!

For a walker starting atsW0, the conditional probability of
finding it at sitesW at timet may be expressed in terms of th
Green’s function through
-

y

Pt~sW,sW0 ;t !5Y~sW;t !dsW,sW0
1E

0

t

dt8 C~sW;t2t8!

3E
0

t8
dt9(

sW8
Gt~sW,sW8;t82t9!y~sW8,sW0 ;t9!

~3.6!

by a similar reasoning to that leading to Eq.~2.2! for the
equivalent problem. If we compare this equation atsW5sW1 and
Eq. ~3.3! we find the relation

A~sW0 ;u!5
cA~u!

C1~sW1 ;u!
Pt~sW1 ,sW0 ;u!

1dsW1 ,sW0F yA~u!2
cA~u!

C1~sW1 ;u!
Y1~sW1 ;u!G ,

~3.7!

which is a generalization of Collins and Kimball’s absor
tion condition at the trap position for general diffusion a
trapping processes. If in particular we assume a cons
trapping rateg we get from Eqs.~2.17!, ~2.21!, and~2.23!

A~sW0 ;t !5gPt~sW1 ,sW0 ;t ! ~3.8!

and the absorption of a walker starting atsW0 is proportional
to the probability of finding it atsW1.

A rather simpler expression forA(sW0 ;u) is obtained if a
separable diffusion process is assumed:

c0~sW,sW8;t !5psW,sW8c0~ t !,
~3.9!

c1~sW,sW1 ;t !5psW,sW1
c1~ t !,

and similar expressions for the WTD for the first jump. U
der these assumptions we get from Eqs.~2.9! and ~2.11!
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(
sW8

Fh
G~sW1 ,sW8;u!psW8,sW1

c1~u!5
c1~u!

c0~u!
Fh

S~sW1 ,sW1 ;u!,

~3.10!

(
sW8

Fh
G~sW1 ,sW8;u!psW8,sW1

y~u!5
y1~u!

y0~u!
Fh~sW1 ,sW1 ;u!.

Substituting in Eq.~3.5! we get for the separable proce

A~sW0 ;u!5dsW1 ,sW0
yA~u!1cA~u!

Fh~sW1 ,sW0 ;u!ỹ~sW0 ;u!

12
c1~u!

c0~u!
Fh

S~sW1 ,sW1 ;u!

~3.11!

with

ỹ~sW0 ;u!5H 1, sW0ÞsW1

y1~u!

y0~u!
, sW05sW1 .

~3.12!

We wish to draw attention on the similitude of this res
and the expression obtained by Weiss and Rubin@28# for the
absorption generating function in discrete time random w
assuming a probabilitya for the walker absorption in eac
visit to the trap

A~rW;z!5
aF~rW;z!

12~12a!F~0W ;z!
, ~3.13!

whereF(rW;z) is the generating function for the discrete tim
FPT probability andrW the initial walker position relative to
the trap. Both results can be compared by the usual subs
tion z→c(u) with due inclusion of the first jump. In doing
so, however, some differences emerge whensW05sW1 because
of the contribution to absorption of those realizations
which the walker is absorbed without leavingsW1. Besides
this, denominators in both expressions of Eqs.~3.11! and
~3.13! cannot be simply put into correspondence exc
when it is assumed a constant rateg and a Poisson hoppin
process, in which case it is verified

c1~u!

c0~u!
512cA~u!. ~3.14!

A. Survival probability and reaction rate

Let us consider a walker starting atsW0. The probability
that this walker has not been absorbed by the trap atsW1 by
time t ~the one particle survival probability! is

S1~ t !512E
0

t

dt8 A~sW0 ;t8!. ~3.15!

Evaluated atsW05sW1, Eq. ~3.15! gives the survival prob-
ability under the NS initial condition and is proportional
the fraction of systems walker trap that has not reacted
time t.

Consider now a distribution of walkers with concentrati
c0(sW0) at t50 in the presence of a trap atsW1. Assuming that
k

tu-

t

y

the walkers do not interact among them, the survival pr
ability of the trapF(t) ~the probability that no walker ha
been trapped! is obtained by extending the Bendler an
Shlesinger@15# formula

F~ t !5expF2E
0

t

dt8 (
sW0

A~sW0 ;t8!c0~sW0!G . ~3.16!

The exponent is the integral of the time-dependent re
tion rate,k(t)52] t ln F(t),

k~ t !5(
sW0

A~sW0 ;t !c0~sW0! ~3.17!

and represents the flux of walkers into the trap betweent and
t1dt. An analytic expression may be obtained in t
Laplace representation by means of Eq.~3.4!

k~u!5yA~u!c0~sW1!1cA~u!

3

(
s8,sW0

Fh
G~sW1 ,sW8;u!v~sW8,sW0 ;u!c0~sW0!

12(
sW8

Fh
G~sW1 ,sW8;u!c1~sW8,sW1 ;u!

. ~3.18!

If we substitute Eq.~3.7! in Eq. ~3.17! we get in turn

k~u!5
cA~u!

C1~sW1 ;u!
c~sW1 ;u!1c0~sW1!

3F yA~u!2
cA~u!

C1~sW1 ;u!
Y~sW1 ;u!G , ~3.19!

where

c~sW1 ;t !5(
sW0

Pt~sW,sW0 ;t !c0~sW0! ~3.20!

is the walker concentration atsW1.
In this way, a generalization of the absorption conditi

proposed by Collins and Kimball’s results. Besides the c
tribution fromc(sW1 ;t) we note an extra contribution from th
initial concentration atsW1, given by the second term.

For the particular caseg5 const., independent of time
Collins and Kimball’s original absorption condition is ob
tained

k~ t !5gc~sW1 ;t !. ~3.21!

If besidesg5 const., we also assume the CE initial co
dition; i.e., the initial walker concentration is the stationa
distribution for the equivalent problem as discussed in S
II, we obtain Noyes’@17# proposal

k~ t !5gc0~sW1!F12E
0

t

dt8 A~sW1 ;t8!G ~3.22!

with an explicit expression for Noyes’ functionh(t), the
probability density that a pair of reactive particles coincidi
at t50 react at timet.
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B. Asymptotic limits

We consider here the behavior of the APD and react
rate in the limits t→0 and t→` for a separable proces
~3.9!. The calculation of asymptotic limits is carried o
starting with the exact expressions~3.11! and ~3.18! for the
respective Laplace transforms and analyzing the behavio
the corresponding limitsu→` andu→0, as established by
Abelian and Tauberian theorems@29#.

We start considering the APD in the limitu→` ~corre-
sponding tot→0). SinceFh(sW,sW0 ;t)→0 for t→0, by the
initial value theoremFh(sW,sW0 ;u)→0 at least asu21 when
u→`. Besides this, by Eq.~2.16! c1(t),c0(t)⇒c1(u)
,c0(u);u and we may aproximate in the limitu→`

A~sW0 ;u!'yA~u!dsW0 ,sW1
1cA~u!ỹ~sW0 ;u!Fh~sW,sW0 ;u!.

~3.23!

In this way we may conclude that the dominant behavio
short times will be given by the reaction dynamics whensW0

5sW1 and by the reaction dynamics convoluted with t
FPTD for sW0ÞsW1. In particular under NS initial conditions
yA5cA and c0(sW0)5dsW0 ,sW1

, so thatcA(t) will be propor-

tional to the number of reactions betweent andt1dt at short
times.

On the other extreme (t→`) we will focus attention on
NS initial conditions. We will assume here that the first m
ment of all transition probability densitiesc i are finite (c i
stands forcA , c1, or c0) so that we can aproximate

c i~u!'c i 0
2 t̄ iu ~3.24!

in the limit u→0, wheret̄ i5*0
`dt tc i(t) is the first moment

of densityc i andc i 0
5*0

`dt c i(t).

Normalization condition imposesc00
51 while cA0

5a is

the probability of absorption in each visit andc10
512a is

the probablity of escaping in each visit. For the particu
case ofg5 const. and a Poisson jumping process as given
c05l exp(2lt), we get from Eq.~2.17! the simple relation
a5g/(g1l) anda→1 wheng→` ~the perfect trap case!.

At the same time we will assume a rather general beh
ior for the FPTD

Fh
S~sW1 ,sW1 ;u!' f l2 f ~u!, ~3.25!

where 0, f l<1 is the probability of return to the origin an
f (u).u for u,ul , some fixed value@for example, in nor-
mal one-dimensional diffusionf (u)}u1/2]. Using these ap-
proximations we get

A~sW1 ;u!'
a

12~12a! f l
2

a~12a!

@12~12a! f l #
2

f ~u!

~3.26!

and we find that the APD exhibits the same time depende
as the FPTD in the long time limit, although the coefficien
of the expansion are modified by the dynamics of reacti
When return to the origin is certain (f l51), we find the
asymptotic behavior
n

in

t

-

r
y

v-

ce

.

A~sW1 ;u!'12
12a

a
f ~u! ~3.27!

so that the walker will certainly be trapped. In this case,
the particular valuea51/2, the APD and the probability o
return to the origin will be exactly coincidents at long time

In summary we have found here that at short timest

! t̄ i) A(sW1 ;t) will behave as the reaction dynamics, while
long times (t@ t̄ i) A(sW1 ;t) will exhibit the same time depen
dence as the probability of return to the origin. This res
can be interpreted in terms of the competition between re
tion and diffusion dynamics for a walker starting atsW1 by
realizing that at short times~in particular compared with the
mean waiting time atsW1) most reactions will correspond t
particles that have not leftsW1, and in this way the reaction
time will not be affected by diffusion. At long times, on th
other hand, most surviving particles will have leftsW1, and
now A(sW1 ;t) is regulated by the probability of return to th
origin.

Let us now turn attention to the reaction rate as given
Eq. ~3.18!, under CE initial conditions. In the short tim
limit, by the same considerations leading to Eq.~3.23!, we
get

k~u!'c0~sW1!F yA~u!1
cA~u!

t̄ 00
u G ~3.28!

and, as in the case of the APD, the short time behavio
dominated by the reaction dynamics.

On the other hand, in the long time limit, and making t
same assumptions leading to Eq.~3.26!, we get

k~u!'c0~sW1!
la

12~12a! f l
H 12 f l

u
1

f ~u!

u

a

12~12a! f l
J

~3.29!

and, again as in the case of the APD, the long time beha
for the reaction rate is determined by the probability of
turn to the origin. In particular, iff l51, we get the simpler
expression

k~u!'c0~sW1!
l

u
f ~u!H 11 f ~u!

c10

cA0
J . ~3.30!

The transition from the reactive regime at short times
the diffusive regime at long times exhibited by the reacti
rate can be interpreted in similar terms as in the case of
APD: At short times the main contribution to reactions w
be given by those walkers initially atsW1. This will produce a
depletion in walker concentration atsW1 that will be compen-
sated at later times by the diffusion process. In this way
the concentration of walkers evolves in time, the behavio
the long time limit becomes regulated by the diffusion pr
cess.

IV. ONE-DIMENSIONAL RANDOM WALK

We illustrate the results obtained with the proposed tre
ment for an imperfect trap by considering a one-dimensio
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separable random walker with hopping probability densit

c0~s,s8;t !5
1

2
@ds,s8111ds,s821#le2lt ~4.1!

wherel215^td& is the mean waiting time at any sites8. We
are defining in this way the equivalent problem with Gree
function

Gh~s,s8;t !5e2lt] t@ I us2s8u~lt !# ~4.2!

as is obtained by substituting Eq.~4.1! in recursive relation
~2.1!.

For the reaction time we assume a generic probab
density in the absence of diffusion

c r~ t !5
~bt !n

n!
be2bt ~4.3!

i.e., an Erlang density with mean reaction time^t r&5(n
11)/b corresponding to a time-dependent absorptivity

g~ t !5b
~bt !n

(
j 50

n
n!

j !
~bt ! j

. ~4.4!

The particular valuen50 reduces the example to th
usual imperfect trap model with a time-independent abso
tivity.

The probability densitiesc1 andcA can now be obtained
substituting Eqs.~4.1! and~4.3! in Eq. ~2.16!, resulting in the
Laplace representation

c1~s,s1 ;u!5c0~s,s1 ,u!H 12F11
u1l

b G2(n11)J ,

cA~u!5F11
u1l

b G2(n11)

. ~4.5!

It remains to give the initial condition in order to defin
completely the example. We will consider the two alrea
introduced NS and CE initial conditions~Sec. II!.

A. Pair creation at tÄ0

This initial condition is introduced in the model throug
the first jump densities~2.24!. With these expressions an
making use of Eqs.~2.3!, ~3.11!, and ~4.1! we get for the
Laplace transform of the APD~3.11!

A~s1 ;u!5H 11Au~u12l!

b2 (
j 50

n S 11
u1l

b D jJ 21

.

~4.6!

The results obtained forn50 and different values of the
quotient

k5
^td&

^t r&
~4.7!

are shown in Fig. 2 with time in units of^td&. These values
were numerically computed by means of the Laplace inv
s

y

-

y

r-

sion algorithm~LAPIN! @30#. It can be appreciated here th
the transition from the reaction regime at short timest
!^td&) to the diffusive regime fort@^td& was in accordance
with the conclusions extracted from the asymptotic behav
analysis. This transition is more evident for values ofk.1,
when ^t r&,^td&. The transition between both regimes r
flects the fact that at short times as compared to character
diffusion time (̂ td&) no significative fraction of walkers will
have escaped froms1.

The probability that a walker~initially at s1) is trapped
without leavings1 is given bycA(t) under the assumed ini
tial condition. The inset in Fig. 2 shows a comparison amo
A(s1 ;t), cA(t) andc r(t) for k50.01, 100.

On the other hand, the long time behavior exhibits t
same time dependence as the probability of return to
origin as predicted by Eq.~3.27!, although the time at which
the asymptotic behavior is reached depends on the valu
k. As it can be appreciated from Fig. 2, this behavior
reached faster for greater values ofk, when there is a smalle
probability of escaping froms1 in each visit: 12a51/(1
1k).

The dominance of reaction dynamics becomes more
dent in Fig. 3, where we have plottedA(s1 ;t) for different
values ofk andn. The time scale in this plot is given in unit
of ^t r&, the mean reaction time. For increasing values ofn,
the reaction probability densityc r @Eq. ~4.3!# is more con-
centrated around the mean value^t r&, and this behavior is
also observed by the APD. The long time behavior, in tu
exhibits the same time dependence as the probability of
turn to the origin. Notice in particular that fork5100 all
curves converge to the same asymptotic behavior, indep
dent of the particular value chosen forn.

The inset in Fig. 3 shows again a comparison amo
A(s1 ;t), cA(t), and c r(t) for two different values ofk.
Here the coincidence of APD andcA(t) at short times can
again be appreciated.

FIG. 2. APD vs t/^td& for the one-dimensional model unde
consideration~see text!. Shown are the plots for different values o
k5^td&/^t r&. Here^td& is the mean waiting time at any site in th
lattice and^t r& is the mean reaction time.
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B. Trap creation in a uniform walker concentration

This initial condition, referred to as CE in Sec. II, is d
scribed by the first jump densities~2.26!. With the particular
expressions obtained when substituting Eq.~4.5! in Eq.
~2.26! and making use of Eqs.~2.10!, ~3.11!, ~3.18!, and
~4.1! we get for the reaction rate

k~u!5c0

l

u

Au

l S u

l
12D

11Au

b S u

b
12

l

b D (
j 50

n F11
u1l

b G j
~4.8!

in the Laplace representation. The inset in Fig. 4 show
plot of k(t) for different choices of the parametersk andn.
In this plot, the time scale is given in units of^t r&.

We can appreciate here the transition from the reactiv
the diffusive regime as time evolves, as was already
cussed when asymptotic behavior was analyzed in Sec. I
Again the transition becomes more evident for greater va
of k. As in the case of the APD in the previous section,
see that at long times all curves corresponding to a gi
value ofk converge to the same function, while the time
which the asymptotic regime is reached depends on the v
of k.

The survival probability can be calculated from the rea
tion rate through

F~ t !5expF2E
0

t

dt8k~ t8!G . ~4.9!

The results obtained for the same values ofk and n al-
ready considered are shown in the main plot of Fig. 4, p
sented as@F(t)#1/c0 vs t/^t r& in order to make the curve
independent of the particular value of initial walkers’ co
centration. The influence of reaction dynamics for sh
times can also be observed in this plot. For a given value

FIG. 3. APD vst/^t r&. Shown are the plots for different value
of k5^td&/^t r& andn is the index of Erlang distribution.
a

to
s-
B.
s

n
t
ue

-

-

t
of

k, in particular, we can appreciate a delay in walkers’ a
sorption with increasing values ofn.

At long times, on the other hand, we observe the beha
predicted by the probability of return to the origin@as this is
the dominant behavior ofk(t)].

The influence of initial walkers’ concentration is consi
ered in Fig. 5, where we have plotted the function

F~ t !512F~ t ! ~4.10!

FIG. 4. Survival probability and time-dependent reaction rate
t/^t r& for the one-dimensional model under consideration~see text!.
The main figure shows the plots for different values ofk
5^td&/^t r& and n is the index of Erlang distribution. The inse
shows the corresponding values for the reaction rate for the s
set of values for the parameters.

FIG. 5. F(t)512F(t) vs t/^td& for different values of initial
walkers’ concentration.F(t) is proportional to the number of reac
tions occurred by timet.
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vs time in units of^td&. This function, introduced in Ref
@20#, gives the fraction of minority species~the trap! that has
reacted by timet; i.e., the number of reactions occurred b
time t divided by the initial number of reactiveA. We have
chosen for comparison two different values ofn and a fixed
value of k53.2 as determined from physical parameters
CE. Three different values for the initial concentration
minority species have been selected, also in accordance
CE when the lattice parameter is identified with the react
radius.

At short times the curves can be grouped according to
value of n, reflecting the dominance of reaction dynamic
On the other extreme, at long times, when the diffusive
gime is dominant, the behavior is determined by the ini
walkers’ concentration. A direct comparison with expe
mental values reported by CE cannot be established at
times, since we are considering here a one-dimensio
model while the CE experiment is three-dimensional. Nev
theless, the short time behavior does not depend on the
mension of diffusion space since it is governed by react
dynamics. In this way we believe that discrepancies repo
at short times by CE could be explained in terms of a m
detailed description of the reaction process.

V. DISCUSSION AND CONCLUSIONS

We have presented a theoretical study of diffusion me
ated reaction processes that extends previous treatmen
order to include the trapping or reaction process~through the
reaction probability density!. Expressions for magnitudes o
experimental interest, the absorption probability dens
time-dependent reaction rate, and survival probability,
obtained in terms of the probability densities that charac
ize the hopping and reaction processes. Our treatment
tains as a particular case the so called imperfect trap m
first considered by Collins and Kimball@16# on the continu-
ous space and later on by Condat@6# on a lattice. Further-
more, our model remains valid for non-Markovian diffusio
In particular, expression~2.9! for the first passage time den
sity is a generalization of previous results since no particu
assumptions such as Markovianicity or separability of
process have been made.

In Sec. II we have characterized the trapping or react
process by defining a time-dependent transition rate to
limbo g(t) or alternatively by the reaction probability den
sity when diffusion is not allowed,c r(t). Both magnitudes
are connected through Eq.~2.15!. The imperfect trap mode
is obtained by assuming a time-independent absorptivitg
J.
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and in the limit g→`, Smoluchowski’s originial model
emerges. Due attention has been given to initial conditi
by incorporating first jump probability densities that gene
alize previous results in the literature. Particular examples
experimental interest@9,20# have been discussed and the co
responding expressions for first jump densities have b
derived.

The main results of this study were presented in Sec.
corresponding to expression~3.4! for the APD, Eq.~3.18! for
the time-dependent reaction rate, and Eq.~3.16! for the sur-
vival probability. In particular, Eq.~3.19! is a generalization
of Collins and Kimball’s absorption condition when a ge
eral diffusion process is considered. For the particular casg
independent of time and assuming an initial walker conc
tration in equilibrium previous to the appearance of the tr
Noyes’ proposal is obtained with an explicit expression
the probability density that a reactive pair coincident at
50 reacts at timet: the APD withs1 the initial position of
the walker.

The short and long time behavior of the APD and react
rate were analyzed in Sec. III B. We conclude from th
analysis that at short times the behavior of both magnitu
is governed by the reaction dynamics, while at long times
time dependence is that of the probability of return to t
origin.

The results obtained were illustrated in Sec. IV by co
sidering a one-dimensional diffusive model. One of the m
important consequences predicted by the proposed treat
is that the short time behavior of the relevant magnitude
governed by reaction dynamics. This behavior is not p
dicted by Collins and Kimball since it is a consequence
the finite size of the trap implicitely assumed when cons
ering a lattice diffusion. In fact, since the trap is assumed
be a lattice site, its extension is given by the lattice para
eter. If we assume a lattice parametera and we take the limit
a→0 keepingla2/25D and ga5k0 in expression~4.8!,
Collins and Kimball’s result for the time-dependent reacti
rate is reobtained. In this way we think that the propos
treatment may be helpful in particular to analyze the sh
time behavior of reaction mediated processes and the in
ence of reaction dynamics.
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